China Good quality Standard and Nonstandard Double Envelope Large Worm Gear Set Worm and Gear

Product Description

Key attributes

Other attributes

Applicable Industries

Manufacturing Plant, Machinery Repair Shops, Energy & Mining

 

Weight (KG)

1650

 

Showroom Location

None

 

Video outgoing-inspection

Provided

 

Machinery Test Report

Provided

 

Marketing Type

Hot Product 2571

 

Warranty of core components

1 Year

 

Core Components

Gear

 

Place of CHINAMFG

ZheJiang , China

 

Condition

New

 

Warranty

1.5 years

 

Shape

Ring Gear

 

Standard or Nonstandard

Nonstandard

 

Tooth Profile

Spur

 

Material

Steel

 

Processing

Casting

 

Pressure Angle

20°

 

Brand Name

HangZhou

 

Product Name

custom large diameter alloy steel spur casting large ring gear

 

Application

Cement kiln

 

Gear Machining

Gear milling

 

Module of Gear:

8-120

 

OD For Gear Wheel:

MAX.13 000 mm

 

Height For CHINAMFG

MAX. 1200 mm

 

Certificate

ISO 9001:2015

 

Tolerance

+/-0.01mm

 

Heat treatment

QT

 

Surface Treatment

Surface Hardening or Carburizing and Quenching

 

Packaging and delivery

Packaging Details

Package for Cement kiln custom large diameter ring gear transmission alloy steel spur casting large ring gear is wooden box and adapts to CHINAMFG transport

 

Port

ZheJiang ,HangZhou or Others

 

Supply Ability

Supply Ability

9000 Ton/Tons per Year

 

OUR WORKSHOPS

 

OUR EQUIPMENTS
Technology Process

Material

Carbon steel,Alloy steel

Structure

Forging,casting

Type of gear

spur gear,helical gear,Planetary Gear

Heat treatment

Quenching and tempering

Process 

forging, rough machining, QT, finish machining

Main equipments

hobbing,CNC machine

Module

up to 200

Precision of gear

Grinding ISO Grade 5-7 & Hobbing ISO Grade 8-9

Inspection

Raw material inspection, UT,physical property test,dimension inspect

Application

Mining machinery, mill, kiln and other equipment

OUR CERTIFICATE
OUR CUSTOMER FEEDBACK
CONTACT 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industry
Hardness: Hb190-Hb300
Gear Position: External Gear
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

Can you explain the impact of worm wheels on the overall efficiency of gearing systems?

Worm wheels have a significant impact on the overall efficiency of gearing systems. Here’s a detailed explanation of their influence:

  • Gear Reduction: Worm wheels are known for their high gear reduction ratios, which means they can achieve significant speed reduction in a single stage. This is due to the large number of teeth on the worm wheel compared to the number of starts on the worm. The gear reduction capability of worm wheels allows for the transmission of high torque at low speeds. However, it’s important to note that the high gear reduction also leads to a trade-off in terms of efficiency.
  • Inherent Efficiency Loss: Worm gears inherently introduce some efficiency loss due to the sliding action that occurs between the worm and the worm wheel. This sliding action generates friction, which results in energy losses and heat generation. Compared to other types of gears, such as spur gears or helical gears, worm gears typically have lower efficiency levels.
  • Self-Locking Property: One unique characteristic of worm wheels is their self-locking property. When the worm wheel is not being actively driven, the friction generated between the worm and the worm wheel prevents the worm wheel from rotating backward. This self-locking feature provides stability and prevents the system from backdriving. However, it also contributes to the overall efficiency loss of the gearing system.
  • Lubrication and Friction: Proper lubrication of worm wheels is crucial for reducing friction and improving their efficiency. Lubrication forms a thin film between the worm and the worm wheel, reducing direct metal-to-metal contact and minimizing frictional losses. Insufficient or improper lubrication can lead to increased friction, higher energy losses, and reduced efficiency. Therefore, maintaining appropriate lubrication levels is essential for optimizing the efficiency of worm gear systems.
  • Design Factors: Several design factors can impact the efficiency of worm wheels. These include the tooth profile, helix angle, material selection, and manufacturing tolerances. The tooth profile and helix angle can influence the contact pattern and the distribution of loads, affecting efficiency. The choice of materials with low friction coefficients and good wear resistance can help improve efficiency. Additionally, maintaining tight manufacturing tolerances ensures proper meshing and reduces energy losses due to misalignment or backlash.
  • Operating Conditions: The operating conditions, such as the applied load, speed, and temperature, can also affect the efficiency of worm wheels. Higher loads and speeds can lead to increased friction and energy losses, reducing efficiency. Elevated temperatures can cause lubricant degradation, increased viscosity, and higher friction, further impacting efficiency. Therefore, operating within the specified load and speed limits and maintaining suitable operating temperatures are essential for optimizing efficiency.

In summary, worm wheels have a notable impact on the overall efficiency of gearing systems. While they offer high gear reduction ratios and self-locking capabilities, they also introduce inherent efficiency losses due to friction and sliding action. Proper lubrication, suitable design considerations, and operating within specified limits are essential for maximizing the efficiency of worm gear systems.

What are the signs that indicate a need for worm wheel replacement or maintenance, and how can they be diagnosed?

Proper diagnosis of worm wheel condition is crucial for determining whether replacement or maintenance is necessary. Here’s a detailed explanation of the signs indicating a need for worm wheel replacement or maintenance and how they can be diagnosed:

  • Excessive Wear: Excessive wear on the worm wheel can be identified by visual inspection or measurement. Signs of wear include pitting, scoring, or surface roughness on the teeth. A worn worm wheel may exhibit a change in tooth profile or a reduction in tooth thickness. Regular inspections and measurements of the gear teeth can help diagnose excessive wear and determine if replacement or maintenance is required.
  • Abnormal Noise or Vibration: Unusual noise or vibration during operation can indicate issues with the worm wheel. Excessive wear, misalignment, or damage to the gear teeth can cause irregular gear meshing, resulting in noise or vibration. Monitoring and analyzing noise and vibration levels using sensors and diagnostic tools can help diagnose the source of the problem and determine if maintenance or replacement of the worm wheel is necessary.
  • Increased Backlash: Backlash refers to the clearance between the teeth of the worm and the worm wheel. An increase in backlash can indicate wear, tooth damage, or misalignment of the worm wheel. Excessive backlash can result in reduced efficiency, decreased positional accuracy, and increased noise. Backlash can be diagnosed by measuring the rotational play or movement between the worm and the worm wheel. If the backlash exceeds acceptable limits, it may indicate the need for maintenance or replacement.
  • Reduced Efficiency or Performance: A decrease in the overall efficiency or performance of the mechanical system may suggest issues with the worm wheel. Reduced efficiency can be caused by various factors, including wear, misalignment, or damage to the gear teeth. Monitoring key performance indicators such as power consumption, speed, or torque can help identify any significant changes that may point to problems with the worm wheel. If the efficiency or performance drops below acceptable levels, maintenance or replacement may be necessary.
  • Leakage or Contamination: Leakage of lubricant or the presence of contamination around the worm wheel can indicate seal failure or damage to the gear housing. Inspecting the gear housing for signs of oil leakage, debris, or foreign particles can help diagnose potential issues. If the worm wheel is not adequately lubricated or if contaminants are present, it can lead to accelerated wear, increased friction, and reduced gear life. Addressing the root cause of the leakage or contamination is essential, and it may involve maintenance or replacement of the worm wheel components.
  • Irregular Motion or Positioning: If the mechanical system exhibits irregular motion, inconsistent positioning, or unintended movements, it may indicate problems with the worm wheel. Misalignment, wear, or damage to the gear teeth can cause irregular gear meshing, resulting in unpredictable motion or positioning errors. Monitoring and analyzing the system’s motion or positional accuracy can help diagnose any abnormalities that may require maintenance or replacement of the worm wheel.

It’s important to note that proper diagnosis of worm wheel condition often requires a combination of visual inspection, measurement, analysis of sensor data, and expertise in gear systems. Regular inspections, preventive maintenance, and monitoring of key performance indicators can help detect early signs of issues and determine the appropriate course of action, whether it involves maintenance or replacement of the worm wheel.

Can you provide examples of products or machinery that use worm wheels in their systems?

Yes, there are numerous products and machinery that utilize worm wheels as integral components in their systems. Here are some examples:

  • Elevators: Worm wheels are commonly used in elevator systems to control the vertical movement of the elevator car. The high gear reduction ratio of the worm wheel allows for precise and controlled lifting and lowering of the elevator. The self-locking property of the worm wheel ensures that the elevator remains stationary at each floor, enhancing safety and stability.
  • Conveyors: Conveyors, such as belt conveyors or screw conveyors, often incorporate worm wheels to drive the movement of the conveyor belt or screw. The gear reduction provided by the worm wheel allows for controlled and synchronized material handling in industries such as manufacturing, mining, and logistics.
  • Automotive Applications: Worm wheels are utilized in various automotive applications. For example, power steering systems use worm wheels to convert the rotational motion of the steering wheel into the linear motion required for steering the vehicle. Additionally, some automotive seat adjustment mechanisms and convertible roof systems use worm wheels for precise positioning and control.
  • Machine Tools: Worm wheels are found in machine tools like milling machines, lathes, and grinders. They are often used in the feed mechanisms to control the movement of the workpiece or cutting tool with high precision and accuracy. The high gear reduction ratio of the worm wheel enables fine adjustments of the feed rate and ensures stable and controlled machining operations.
  • Robotics: Worm wheels are employed in various robotic systems for precise motion control. They can be found in robotic arms, grippers, and joints, allowing for accurate positioning and movement. The self-locking property of the worm wheel ensures that the robot maintains its position when not actively driven, providing stability and safety in robotic applications.
  • Positioning Systems: Precision positioning systems, such as linear stages or rotary stages, utilize worm wheels to achieve accurate and repeatable motion. These systems are commonly used in semiconductor manufacturing, optics, microscopy, and other industries where precise positioning is critical. Worm wheels provide the necessary gear reduction and precise control required for precise positioning applications.
  • Gate Operators: Worm wheels are employed in gate operator systems to control the opening and closing of gates, such as in residential or commercial gate automation. The gear reduction provided by the worm wheel allows for controlled and smooth operation of the gate, ensuring security and convenience.
  • Industrial Mixers: Worm wheels are used in industrial mixers and agitators to control the rotational speed and torque applied to the mixing blades. The gear reduction ratio of the worm wheel enables precise control of the mixing process, ensuring efficient and consistent mixing of various substances in industries like chemical processing and food production.

These examples illustrate the wide range of applications where worm wheels are utilized to provide precise motion control, torque management, and reliable performance. Their versatility and ability to control speed, torque, and direction make them valuable components in various products and machinery.

China Good quality Standard and Nonstandard Double Envelope Large Worm Gear Set Worm and Gear  China Good quality Standard and Nonstandard Double Envelope Large Worm Gear Set Worm and Gear
editor by CX 2024-03-12