China manufacturer Hot Sale Motor 48V 1000W Worm Gear for Servo Motor 1500rpm BLDC Motor with Encoder for Shopping Guide Robot Medical Robot

Product Description

KY110AS571-15
Usage:Boat, Car, Electric Bicycle, Fan
Certification:CE
Type:Servo Motor
Torque:6.3N.M
Construction:Permanent Magnet
Commutation:Brushless
Protect Feature:Drip-proof
Speed(RPM):1500r/min
Continuous Current(A):40A
Output Power:1000W
Voltage(V):48VDC
Efficiency:IE 1
Application:AGV,Robot,tracked car
Product Name:bldc MOTOR 200w 24V
Motor type:bldc servo motor
Keywords:bldc servo motor
Rated Voltage:48VDC
Color:Black
Diameter:80MM
Weight:10kg

We are leading manufacturer of  brushless dc (BLDC) motors with power range from 200W to 3000W, and the voltage range from 24V to 48V DC. It has been widely used for many applications, eg., auto industry, battery powered bikes, scooters, electric cars, forklifts, golf buggies, boats etc. It has better performances than other traditional dc motors.

Product Features:
*High Torque to inertia ratio&up to 15000Nm/kgm²
*Fast dynamic response *time constant <20ms
*Wide speed adjusting&feedback up to 1000:1
*Steady speed precision up to 0.5%
*High overload,2Mn/30s,3.5N.m/10s
*Small volume and light
*Silent,the lowest noise is only 45dB(A)
*Protected with IP65,Class F insulation
Industry class
1.The altitude should be over 1000 CHINAMFG above sea level
2.Environment temperature:+5ºC~+40ºC
3.The month average tallest relative humidity is 90%,at the same the month average lowest temperature is less than 25ºC.

Parameters

 

Model

Volt

Power

Rated Torque

Rated Speed

Rated Current

Peak Torque

Encoder

Weight

Unit

V

W

Nm

r/min

A

Nm

P/R

kg

KY60AS5711-30

24

100

0.318

3000

5.4

0.95

2500

1.5

KY80AS5712-15

12

200

1.27

1500

22

3.8

2500

2.2

KY80AS5712-15

24/48

200

1.27

1500

9.4

3.8

2500

2.2

KY80AS5714-15

12

400

2.55

1500

44

7.65

2500

3.6

KY80AS5714-15

24/48

400

2.55

1500

21.3

7.65

2500

3.6

KY80AS5714-30

12

400

1.27

3000

44

3.8

2500

2.2

KY80AS5714-30

24/48

400

1.27

3000

18.8

3.8

2500

2.2

KY110AS0405-15

48

500

3.1

1500

14

10.8

2500

6

KY110AS5717-15

24

750

4.77

1500

41

16.6

2500

6

KY110AS0408-15

48

800

5

1500

22

17.9

2500

7.8

KY110AS5710-15

24

1000

6.3

1500

55

21.4

2500

7.8

KY110AS571-15

48

1000

6.3

1500

28

22

2500

7.8

KY110AS 0571 -12

48

1200

4.5

2500

33

15.7

2500

7.8

KY110AS571-15

48

1500

9.5

1500

37.5

28

2500

10

KY110AS0420-25

48

2000

7.6

2500

55

26

2500

10

KY130AS0430-15

48

3000

19

1500

73

57

2500

14

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 10
Samples:
US$ 235/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you describe the various types and configurations of worm wheels available?

There are several types and configurations of worm wheels available to suit different applications and requirements. Here’s a description of the various types and configurations:

  • Single-Threaded Worm Wheel: This is the most common type of worm wheel configuration. It has a single thread on its circumference that meshes with the worm gear. Single-threaded worm wheels provide a high gear reduction ratio and are used in applications where high torque and low-speed operation are required.
  • Double-Threaded Worm Wheel: Double-threaded worm wheels have two threads on their circumference, which results in increased contact area and improved load distribution. This configuration allows for higher torque transmission capacity and smoother operation. Double-threaded worm wheels are utilized in applications that require even higher torque output and improved efficiency.
  • Non-Cylindrical Worm Wheel: In some cases, the worm wheel may have a non-cylindrical shape. For example, it can have a concave or convex profile. Non-cylindrical worm wheels are used in specific applications where the shape is designed to accommodate unique requirements such as increased contact area, improved load distribution, or specialized motion control.
  • Enveloping Worm Wheel: Enveloping worm wheels have specialized tooth profiles that provide increased contact area and improved load-carrying capacity. The teeth of the worm wheel wrap around the helical threads of the worm gear, resulting in enhanced meshing and load distribution. Enveloping worm wheels are typically used in high-load applications that require superior torque transmission and durability.
  • Hypoid Worm Wheel: Hypoid worm wheels are designed with a hypoid offset, meaning that the centerline of the worm gear is offset from the centerline of the worm wheel. This configuration allows for smoother meshing and increased contact area, leading to improved load distribution and reduced wear. Hypoid worm wheels are often utilized in applications that require high torque, compact design, and smooth operation.
  • Materials: Worm wheels can be made from a variety of materials depending on the application requirements. Common materials include steel, bronze, brass, and specialized alloys. Steel worm wheels offer high strength and durability, while bronze and brass worm wheels provide excellent wear resistance and self-lubricating properties. The choice of material depends on factors such as load capacity, operating conditions, and cost considerations.

These are some of the types and configurations of worm wheels available. The selection of a particular type depends on the specific application requirements, including torque, speed, load capacity, space constraints, and desired efficiency. It’s important to consider factors such as tooth profile, material selection, and manufacturing precision to ensure the reliable and efficient operation of the worm wheel in a given application.

Can you provide insights into the importance of proper installation and alignment of worm wheels?

Proper installation and alignment of worm wheels are crucial for ensuring optimal performance, longevity, and efficiency of the gearing system. Here’s a detailed explanation of their importance:

  • Load Distribution: Proper installation and alignment help in achieving the correct meshing and contact pattern between the worm and the worm wheel. This ensures that the load is distributed evenly across the teeth, minimizing localized stress concentrations. Misalignment or incorrect installation can lead to uneven load distribution, causing premature wear, tooth breakage, and reduced gear life.
  • Reduced Friction and Wear: Correct alignment of the worm wheel is essential for minimizing sliding friction between the worm and the worm wheel. Improper alignment can result in increased friction, leading to higher energy losses, heat generation, and accelerated wear of the gear surfaces. Proper installation and alignment help to reduce friction and wear, improving the efficiency and longevity of the worm wheel system.
  • Backlash and Efficiency: Backlash refers to the clearance between the teeth of the worm and the worm wheel. Proper installation and alignment help in minimizing backlash, ensuring tight and accurate meshing between the gear teeth. Excessive backlash can lead to reduced efficiency, decreased positional accuracy, and increased vibration or noise. By achieving proper alignment, backlash can be controlled within acceptable limits, optimizing the efficiency and performance of the worm wheel system.
  • Stability and Noise: Correct installation and alignment contribute to the stability and smooth operation of the worm wheel system. Misalignment can introduce vibrations, noise, and undesirable oscillations during operation. Proper alignment minimizes these issues, promoting stable and quiet operation. This is particularly important in applications where noise reduction, precision, and smooth motion are critical, such as robotics, machine tools, or motion control systems.
  • Mechanical Integrity: Proper installation and alignment help to maintain the overall mechanical integrity of the worm wheel system. Misalignment or incorrect installation can result in excessive forces, stresses, or deflections within the components, leading to structural failures or reduced system performance. By ensuring proper alignment, the mechanical integrity of the system is preserved, ensuring reliable and safe operation.
  • System Performance: The overall performance of the worm wheel system is directly influenced by proper installation and alignment. Correct alignment ensures accurate transmission of motion, precise positioning, and reliable torque transfer. It helps to achieve the desired speed ratios, torque ratios, and positional accuracy required for the specific application. Proper installation and alignment contribute to the overall efficiency, reliability, and performance of the worm wheel system.

In summary, proper installation and alignment of worm wheels are vital for achieving optimal performance, longevity, and efficiency of the gearing system. They help to distribute the load evenly, reduce friction and wear, minimize backlash, promote stability and smooth operation, preserve mechanical integrity, and ensure desired system performance. Adhering to recommended installation procedures and alignment tolerances is crucial to maximize the benefits and capabilities of worm wheel systems.

Are there innovations or advancements in worm wheel technology that have emerged in recent years?

Yes, there have been significant innovations and advancements in worm wheel technology in recent years. Here’s a detailed explanation of some notable developments:

  • Improved Materials: The development of new materials and advanced manufacturing techniques has contributed to improved performance and durability of worm wheels. High-performance materials such as hardened steels, alloys, and composite materials are being used to enhance the strength, wear resistance, and load-carrying capacity of worm wheels. These materials offer better fatigue resistance, reduced friction, and increased efficiency, leading to longer service life and improved overall performance.
  • Enhanced Tooth Profile Design: Innovations in tooth profile design have focused on optimizing the contact pattern, load distribution, and efficiency of worm wheels. Advanced computer-aided design (CAD) and simulation tools enable the modeling and analysis of complex tooth profiles, resulting in improved gear meshing and reduced losses. Modified tooth profiles, such as helical or curved teeth, are being employed to minimize sliding friction, increase tooth engagement, and enhance overall efficiency.
  • Surface Treatments and Coatings: Surface treatments and coatings are being used to improve the wear resistance, reduce friction, and enhance the performance of worm wheels. Technologies such as nitriding, carburizing, and diamond-like carbon (DLC) coatings are applied to the gear surfaces to increase hardness, reduce friction, and minimize wear. These treatments and coatings improve the efficiency and extend the lifespan of worm wheels, particularly in demanding applications with high loads or harsh operating conditions.
  • Advanced Manufacturing Techniques: Innovations in manufacturing techniques have enabled the production of worm wheels with higher precision, tighter tolerances, and improved surface finishes. Technologies such as computer numerical control (CNC) machining, 3D printing, and advanced grinding methods allow for the production of complex geometries and accurate tooth profiles. These advancements result in better gear meshing, reduced noise, improved efficiency, and enhanced overall performance of worm wheel systems.
  • Integrated Lubrication Systems: Integrated lubrication systems have been developed to optimize the lubrication process and improve the efficiency of worm wheels. These systems use precise oil delivery mechanisms, such as micro-pumps or spray nozzles, to deliver lubricant directly to the meshing surfaces. The controlled and targeted lubrication ensures proper lubricant film formation, reduces frictional losses, and minimizes wear. Integrated lubrication systems also help to maintain consistent lubricant quality and reduce the need for manual lubrication maintenance.
  • Smart Monitoring and Predictive Maintenance: Advancements in sensor technology, data analytics, and connectivity have facilitated the implementation of smart monitoring and predictive maintenance strategies for worm wheel systems. Sensors embedded in the gear assembly can collect real-time data on parameters such as temperature, vibration, or load. This data is then analyzed using machine learning algorithms to detect anomalies, predict potential failures, and optimize maintenance schedules. Smart monitoring and predictive maintenance help to maximize uptime, reduce downtime, and improve the overall reliability and efficiency of worm wheel systems.

These recent innovations and advancements in worm wheel technology have resulted in improved performance, efficiency, durability, and reliability of worm wheel systems. Continued research and development in this field are expected to drive further advancements and expand the capabilities of worm wheel technology in various applications.

China manufacturer Hot Sale Motor 48V 1000W Worm Gear for Servo Motor 1500rpm BLDC Motor with Encoder for Shopping Guide Robot Medical Robot  China manufacturer Hot Sale Motor 48V 1000W Worm Gear for Servo Motor 1500rpm BLDC Motor with Encoder for Shopping Guide Robot Medical Robot
editor by Dream 2024-05-08