China OEM Customized High Precision Elevator Worm Gear Worm Gear

Product Description

Quick Details

Shape: Spur Place of Origin: HangZhou , China (Mainland) Model Number: BG00016
Brand Name: AT Material: Steel Product Type: Non-Standard Product / Customize Product
Application Materials: Iron, Steel, Brass, Copper, Aluminum and Stainless Steel Machining Process: Gear Hobbing, Shaping, Shaving, Grinding and CNC Machining Surface Finish: Anti-rust Treatment, Heat Treatment, Polishing and Coating Treatment
Surface Hardness: HRC 28~32, HRC 40~44, HRC 58~62 Rust Protection Time: 2 Years Maximun Tooth Profile Precision: GB 5~8 level (AGMA 10~13 level)
Applicable Standard: GB / ISO / DIN / JIS / AGMA Quoted Condition: 2D / 3D Drawing / Sample Quality Guarantee: 1 Year

Packaging & Delivery

Packaging Details: Anti-rust Paper, Small Box and Carton
Delivery Detail: 20 ~ 30 days

Products Range

 Material  Carbon Steel  SAE1571, SAE1045, Cr12, 40Cr, Y15Pb, 1214L……
 Alloy Steel  20CrMnTi, 16MnCr5, 20CrMnMo, 41CrMo, 17CrNiMo5……
 Brass/Bronze  HPb59-1, H70, CuZn39Pb2, CuZn40Pb2, C38000, CuZn40……
 Machining Process  Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching,
 Gear Shaving, Gear Grinding and Gear Lapping
 Modules  1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5……8.0
 Tolerance Control  Outer Diameter  ±0.005 mm
 Length Dimension  ±0.05 mm
 Teeth Accuracy  DIN Class 4, ISO/GB Class 4, AGMA Class 13, JIS Class 0
 Heat Treatment  Quenching & Tempering, Carburizing & Quenching, High-frequency Hardening, Carbonitriding……
 Surface Treatment  Blacking, Polishing, Anodization, Chrome Plating, Zinc Plating, Nickel Plating……
 Standard  European, American or Britain Standard

ABOUT US:

As your one-stop source, AT PRECAST,we design, manufacturer and distribute precast concrete accessories including the Lifting Systems and Anchoring systems Coil and Ferrule Inserts. for Concrete and Prefabricated area.

As a leader in developing concrete accessory products, our main goal is to produce products that are safer, faster and more cost efficient.

With more than totally 50 years working experience, our entire staff is dedicated to provide you with the best customer service and competitive prices. Our sales force are able to answer your questions quickly and offer you technical support .

Assurance:

100% quality manufacturing.
 We guarantee that our products meet your supplied specifications
 Extremely competitive pricing
 Delivery to your port or front door
 4 —- 8 week lead times
 We handle all paperwork
 Partial container orders
 Flexible payment options
 Unique tooling options
 Full range of packaging options from bulk to retail ready
 Complete testing services available

 

FAQs:

1. Where is your location?

We are located in HangZhou City of China and are closed to Airport. It takes 30minuts by car from Liuting Airport our company.

2. How long has the company been established?

AT INDUSTRY was established in 2009. There is 6 years exporting experiences.

3. How many employees do you have?

Administration / sales    4
Engineering / design as our partner     8
Production as our partners 120
Quality assurance / inspection   10

4. Which countries do you export to?

U.S.A, Germany, France, Italy, UK, Brazil, Middle east of Asia, Thailand,

5. What proportion of your goods are exported?

100% of our production are exported to all over the world.

6. How long does it take to receive samples?

a) Pattern:30-45days after order 
b) Sample:30days after pattern finishing.
c) The lead time is the general production period and does not include the transportation time.

7. New product development process

Got tooling order and sample order with 50% deposit—Hold a meeting with the relation dept. to ensure the developing schedule—Design pattern, fixture and gauge and making them in our house—mold steel buying—Machining—Inspection—Send out the sample with initial inspection report.

8. How long is the manufacturing lead time?

Mass Production: 90days after sample approval by yours.
The lead time is the general production period including the transportation time.
We could make some special production arrangement effectively if customer has urgent need.

9. What basis can we buy goods?

We generally offer customers prices FOB& CIF (Carriage, Insurance & Freight). The CIF includes the freight cost to your nominated sea port.
We do provide clearance of goods which needs to be handled by a local freight forwarder.
All local costs and taxes are the responsibility of the buyer. We are happy to offer advisement on shipping if required.

10. What are the payment terms?

Payment terms are negotiable and will improve for long term customers.
During the initial stages, we request 50% of tooling fee in advance with the balance payable on acceptance of samples.
Production orders can be negotiable. We prefer 50% deposit and the balance by T/T before sails. But sometimes T/T 30 days after sails would also acceptable.

11. Which currency can we buy in?

We can deal in USD / Euro currency / GBP.

12. How long does it take to ship goods from China by sea?

It takes about 5 weeks to European ports plus 1 week customs clearance, so you can get the container within 6 to 7 weeks. It takes about 2 weeks to east coast and 3 weeks to west coast US ports. All sea goods are shipped from HangZhou Port.

13. How long does it take to ship goods from China by air?

It takes about 7 days to all major destinations.

14. Can we visit the factory to conduct an audit?

Yes, you are welcome to visit our partner factory by prior agreement.

15. How do we retain client confidentiality?

We are happy to CHINAMFG Confidentiality Agreements with customers and will honor them.

16. Which languages do we do business in?

Although we do business with many countries around the world, we can only communicate effectively in Chinese English.
All information supplied should therefore be supplied in this form.

17. Is there a minimum volume of business required to conduct international purchasing?

There are no minimum volumes, but the prices of the goods, plus the fixed costs of importing makes it more economical to buy in high volumes. All potential customers will be assessed on an individual basis to determine if it appears a viable option for all parties to develop a relationship.

18. What type of parts you are specialized in?

Our business contains 2 areas,
one is for construction precast including lifting system, rigging hardware metal parts.
 
Another is customized metal business of quality sand castings, investment castings, lost foam castings, hot forgings, cold forgings, stampings, machined parts, injectionmolded plastics parts, etc.

19. Which kind of equipments do you have?

Forging friction press 160Ton, 300Ton, 630Ton, 1200Ton
Casting CHINAMFG of 200kg, 500kg,1000kgs, 2000kgs
Press of 63ton, 120tons
CNC Machining center
CNC Vertical Lathe
CNC Lathe center
Boring machine
Drilling machine
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Industry
Hardness: Hardened
Manufacturing Method: Cast Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Type: Worm And Wormwheel
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you provide insights into the importance of proper installation and alignment of worm wheels?

Proper installation and alignment of worm wheels are crucial for ensuring optimal performance, longevity, and efficiency of the gearing system. Here’s a detailed explanation of their importance:

  • Load Distribution: Proper installation and alignment help in achieving the correct meshing and contact pattern between the worm and the worm wheel. This ensures that the load is distributed evenly across the teeth, minimizing localized stress concentrations. Misalignment or incorrect installation can lead to uneven load distribution, causing premature wear, tooth breakage, and reduced gear life.
  • Reduced Friction and Wear: Correct alignment of the worm wheel is essential for minimizing sliding friction between the worm and the worm wheel. Improper alignment can result in increased friction, leading to higher energy losses, heat generation, and accelerated wear of the gear surfaces. Proper installation and alignment help to reduce friction and wear, improving the efficiency and longevity of the worm wheel system.
  • Backlash and Efficiency: Backlash refers to the clearance between the teeth of the worm and the worm wheel. Proper installation and alignment help in minimizing backlash, ensuring tight and accurate meshing between the gear teeth. Excessive backlash can lead to reduced efficiency, decreased positional accuracy, and increased vibration or noise. By achieving proper alignment, backlash can be controlled within acceptable limits, optimizing the efficiency and performance of the worm wheel system.
  • Stability and Noise: Correct installation and alignment contribute to the stability and smooth operation of the worm wheel system. Misalignment can introduce vibrations, noise, and undesirable oscillations during operation. Proper alignment minimizes these issues, promoting stable and quiet operation. This is particularly important in applications where noise reduction, precision, and smooth motion are critical, such as robotics, machine tools, or motion control systems.
  • Mechanical Integrity: Proper installation and alignment help to maintain the overall mechanical integrity of the worm wheel system. Misalignment or incorrect installation can result in excessive forces, stresses, or deflections within the components, leading to structural failures or reduced system performance. By ensuring proper alignment, the mechanical integrity of the system is preserved, ensuring reliable and safe operation.
  • System Performance: The overall performance of the worm wheel system is directly influenced by proper installation and alignment. Correct alignment ensures accurate transmission of motion, precise positioning, and reliable torque transfer. It helps to achieve the desired speed ratios, torque ratios, and positional accuracy required for the specific application. Proper installation and alignment contribute to the overall efficiency, reliability, and performance of the worm wheel system.

In summary, proper installation and alignment of worm wheels are vital for achieving optimal performance, longevity, and efficiency of the gearing system. They help to distribute the load evenly, reduce friction and wear, minimize backlash, promote stability and smooth operation, preserve mechanical integrity, and ensure desired system performance. Adhering to recommended installation procedures and alignment tolerances is crucial to maximize the benefits and capabilities of worm wheel systems.

How does the choice of worm wheels affect the overall performance and reliability of gearing systems?

The choice of worm wheels has a significant impact on the overall performance and reliability of gearing systems. Here’s a detailed explanation of how the selection of worm wheels affects these aspects:

  • Material Selection: The choice of material for worm wheels is crucial in determining their performance and reliability. Different materials, such as steel, bronze, or plastic, offer varying levels of strength, durability, and resistance to wear. The selection of the appropriate material should consider factors such as load requirements, operating conditions, and compatibility with other components in the system. Opting for high-quality materials that are suitable for the specific application can enhance the overall performance and reliability of the gearing system.
  • Accuracy and Tolerance: Worm wheels are manufactured with different levels of accuracy and tolerance. Higher precision and tighter tolerances result in improved gear meshing, reduced backlash, and enhanced positional accuracy. The choice of worm wheels with the appropriate accuracy and tolerance level for the application is essential for achieving the desired performance and reliability. In applications where precise motion control, high positional accuracy, or low backlash is critical, selecting worm wheels with superior accuracy can significantly enhance system performance and reliability.
  • Gear Design and Geometry: The design and geometry of worm wheels play a crucial role in determining their performance and reliability. Factors such as tooth profile, helix angle, number of teeth, and tooth surface finish influence the gear meshing characteristics, load distribution, efficiency, and noise levels. Optimal gear design and geometry should be selected based on the specific application requirements and operating conditions. Choosing worm wheels with well-designed gear profiles and appropriate geometric parameters can contribute to smoother operation, efficient power transmission, and improved reliability of the gearing system.
  • Lubrication and Maintenance: The choice of worm wheels can affect the lubrication requirements and maintenance intervals of the gearing system. Some materials or coatings may require specific lubricants or lubrication techniques to ensure proper operation and longevity. Additionally, certain worm wheel designs may have features that facilitate lubricant retention and distribution, improving gear lubrication and reducing wear. Considering the lubrication and maintenance aspects during the selection of worm wheels can enhance the overall performance, efficiency, and reliability of the gearing system.
  • Load Capacity and Efficiency: The load-carrying capacity and efficiency of the gearing system are influenced by the choice of worm wheels. Different worm wheel designs and materials have varying load capacity ratings and efficiency characteristics. Selecting worm wheels that can handle the anticipated loads and provide efficient power transmission helps prevent premature wear, excessive heat generation, and gear failures. Choosing worm wheels with appropriate load capacity and efficiency ratings ensures reliable performance and enhances the overall reliability of the gearing system.
  • Compatibility and System Integration: The choice of worm wheels should consider their compatibility and integration with other components in the gearing system. This includes factors such as shaft sizes, mounting configurations, and interfacing with the worm. Ensuring proper compatibility and integration minimizes alignment issues, reduces stress concentrations, and promotes efficient power transmission. Selecting worm wheels that are specifically designed for compatibility and seamless integration within the system enhances the overall performance, reliability, and longevity of the gearing system.

In summary, the choice of worm wheels significantly impacts the overall performance and reliability of gearing systems. Considerations such as material selection, accuracy and tolerance, gear design and geometry, lubrication and maintenance requirements, load capacity and efficiency, and compatibility with other system components all contribute to the system’s performance and reliability. By carefully selecting worm wheels that meet the specific application requirements and considering these factors, the overall performance and reliability of the gearing system can be optimized.

Are there innovations or advancements in worm wheel technology that have emerged in recent years?

Yes, there have been significant innovations and advancements in worm wheel technology in recent years. Here’s a detailed explanation of some notable developments:

  • Improved Materials: The development of new materials and advanced manufacturing techniques has contributed to improved performance and durability of worm wheels. High-performance materials such as hardened steels, alloys, and composite materials are being used to enhance the strength, wear resistance, and load-carrying capacity of worm wheels. These materials offer better fatigue resistance, reduced friction, and increased efficiency, leading to longer service life and improved overall performance.
  • Enhanced Tooth Profile Design: Innovations in tooth profile design have focused on optimizing the contact pattern, load distribution, and efficiency of worm wheels. Advanced computer-aided design (CAD) and simulation tools enable the modeling and analysis of complex tooth profiles, resulting in improved gear meshing and reduced losses. Modified tooth profiles, such as helical or curved teeth, are being employed to minimize sliding friction, increase tooth engagement, and enhance overall efficiency.
  • Surface Treatments and Coatings: Surface treatments and coatings are being used to improve the wear resistance, reduce friction, and enhance the performance of worm wheels. Technologies such as nitriding, carburizing, and diamond-like carbon (DLC) coatings are applied to the gear surfaces to increase hardness, reduce friction, and minimize wear. These treatments and coatings improve the efficiency and extend the lifespan of worm wheels, particularly in demanding applications with high loads or harsh operating conditions.
  • Advanced Manufacturing Techniques: Innovations in manufacturing techniques have enabled the production of worm wheels with higher precision, tighter tolerances, and improved surface finishes. Technologies such as computer numerical control (CNC) machining, 3D printing, and advanced grinding methods allow for the production of complex geometries and accurate tooth profiles. These advancements result in better gear meshing, reduced noise, improved efficiency, and enhanced overall performance of worm wheel systems.
  • Integrated Lubrication Systems: Integrated lubrication systems have been developed to optimize the lubrication process and improve the efficiency of worm wheels. These systems use precise oil delivery mechanisms, such as micro-pumps or spray nozzles, to deliver lubricant directly to the meshing surfaces. The controlled and targeted lubrication ensures proper lubricant film formation, reduces frictional losses, and minimizes wear. Integrated lubrication systems also help to maintain consistent lubricant quality and reduce the need for manual lubrication maintenance.
  • Smart Monitoring and Predictive Maintenance: Advancements in sensor technology, data analytics, and connectivity have facilitated the implementation of smart monitoring and predictive maintenance strategies for worm wheel systems. Sensors embedded in the gear assembly can collect real-time data on parameters such as temperature, vibration, or load. This data is then analyzed using machine learning algorithms to detect anomalies, predict potential failures, and optimize maintenance schedules. Smart monitoring and predictive maintenance help to maximize uptime, reduce downtime, and improve the overall reliability and efficiency of worm wheel systems.

These recent innovations and advancements in worm wheel technology have resulted in improved performance, efficiency, durability, and reliability of worm wheel systems. Continued research and development in this field are expected to drive further advancements and expand the capabilities of worm wheel technology in various applications.

China OEM Customized High Precision Elevator Worm Gear Worm Gear  China OEM Customized High Precision Elevator Worm Gear Worm Gear
editor by CX 2024-03-23