China wholesaler CHINAMFG S Series Helical Worm Geared Motor with Output Flange

Product Description

S series Helical Geared Motor Characteristics

1. Features:

  1. High efficiency: 75%-80%;
  2. High technology: the helical gear and a worm gear combined with an integrated transmission to improve the torque and efficiency.
  3. High precision: the gear is made of high-quality alloy steel forging, carbonitriding and hardening treatment, grinding process to ensure high precision and stable running.
  4. High interchangeability: highly modular, serial design, strong versatility and interchangeability.

2. Technical parameters
 

Ratio 6.8-288
Input power 0.12-22KW
Output torque 11-4530N.m
Output speed 5-206rpm
Mounting type Foot mounted, foot mounted with CHINAMFG shaft, output flange mounted, hollow shaft mounted, B5 flange mounted with hollow shaft, foot mounted with hollow shaft, B14 flange mounted with hollow shaft, foot mounted with splined hole, foot mounted with shrink disk, hollow shaft mounted with anti-torque arm. 
Input Method Flange input(AM), shaft input(AD), inline AC motor input, or AQA servo motor
Brake Release HF-manual release(lock in the brake release position), HR-manual release(autom-atic braking position)
Thermistor TF(Thermistor protection PTC thermisto)
TH(Thermistor protection Bimetal swotch)
Mounting Position M1, M2, M3, M4, M5, M6
Type S37-S97
Output shaft dis. 20mm, 25mm, 30mm, 35mm, 40mm, 50mm, 60mm, 70mm,
Housing material HT200 high-strength cast iron from R37,47,57,67,77,87
Housing material HT250 High strength cast iron from R97 107,137,147,
157,167,187
Heat treatment technology carbonitriding and hardening treatment
Single Stage Efficiency 75%-80%
Lubricant VG220
Protection Class IP55, F class

About Us

ZheJiang CHINAMFG Drive Co.,Ltd,the predecessor was a state-owned military mould enterprise, was established in 1965. CHINAMFG specializes in the complete power transmission solution for high-end equipment manufacturing industries based on the aim of “Platform Product, Application Design and Professional Service”.
CHINAMFG have a strong technical force with over 350 employees at present, including over 30 engineering technicians, 30 quality inspectors, covering an area of 80000 square CHINAMFG and kinds of advanced processing machines and testing equipments. We have a good foundation for the industry application development and service of high-end speed reducers & variators owning to the provincial engineering technology research center,the lab of gear speed reducers, and the base of modern R&D.

Our Team

Quality Control
Quality:Insist on Improvement,Strive for Excellence With the development of equipment manufacturing indurstry,customer never satirsfy with the current quality of our products,on the contrary,wcreate the value of quality.
Quality policy:to enhance the overall level in the field of power transmission  
Quality View:Continuous Improvement , pursuit of excellence
Quality Philosophy:Quality creates value

3. Incoming Quality Control
To establish the AQL acceptable level of incoming material control, to provide the material for the whole inspection, sampling, immunity. On the acceptance of qualified products to warehousing, substandard goods to take return, check, rework, rework inspection; responsible for tracking bad, to monitor the supplier to take corrective 
measures to prevent recurrence.

4. Process Quality Control
The manufacturing site of the first examination, inspection and final inspection, sampling according to the requirements of some projects, judging the quality change trend;
 found abnormal phenomenon of manufacturing, and supervise the production department to improve, eliminate the abnormal phenomenon or state.

5. FQC(Final QC)
After the manufacturing department will complete the product, stand in the customer’s position on the finished product quality verification, in order to ensure the quality of 
customer expectations and needs.

6. OQC(Outgoing QC)
After the product sample inspection to determine the qualified, allowing storage, but when the finished product from the warehouse before the formal delivery of the goods, there is a check, this is called the shipment inspection.Check content:In the warehouse storage and transfer status to confirm, while confirming the delivery of the 
product is a product inspection to determine the qualified products.

7. Certification.

Packing

Delivery

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Application: Textile Machinery, Conveyer Equipment, Packaging Machinery, Food Machinery, Agricultural Machinery
Feature: Change Speed
Tensile Strength: Common
Material: Cast Iron
Type: Helical Worm Gear
Customization:
Available

|

What role do worm wheels play in controlling speed and torque in mechanical assemblies?

Worm wheels play a crucial role in controlling speed and torque in mechanical assemblies. Here’s a detailed explanation of how worm wheels contribute to speed and torque control:

  • Gear Reduction: One of the primary functions of worm wheels is to provide gear reduction. The helical teeth of the worm gear engage with the teeth of the worm wheel, resulting in a rotational output that is slower than the input speed. The gear reduction ratio is determined by the number of threads on the worm wheel and the pitch diameter of the gear. By controlling the gear reduction ratio, worm wheels enable precise speed control in mechanical assemblies.
  • Speed Control: Worm wheels allow for fine control of rotational speed in mechanical assemblies. The high gear reduction ratio achievable with worm wheels enables slower output speeds, making them suitable for applications that require precise speed regulation. By adjusting the number of threads on the worm wheel or the pitch diameter of the gear, the speed output can be precisely controlled to match the requirements of the application.
  • Torque Amplification: Worm wheels are capable of amplifying torque in mechanical assemblies. The helical tooth engagement between the worm gear and the worm wheel creates a mechanical advantage, resulting in increased torque at the output. This torque amplification allows worm wheels to transmit higher torque levels while maintaining a compact design. The ability to control torque amplification makes worm wheels suitable for applications that require high torque output, such as lifting mechanisms, conveyors, or heavy machinery.
  • Torque Limiting: Worm wheels also provide torque limiting capabilities in mechanical assemblies. The self-locking nature of the worm wheel prevents reverse motion or backdriving from the output side to the input side. This self-locking property acts as a torque limiter, restricting excessive torque transmission and protecting the system from overload or damage. The torque limiting feature of worm wheels ensures safe and controlled operation in applications where torque limitation is critical, such as safety mechanisms or overload protection devices.
  • Directional Control: Worm wheels offer precise directional control in mechanical assemblies. The helical tooth engagement between the worm gear and the worm wheel allows for power transmission in a single direction. The self-locking property of the worm wheel prevents reverse motion, ensuring that the output shaft remains stationary when the input is not actively driving it. This directional control is beneficial in applications that require precise positioning or unidirectional motion, such as indexing mechanisms or robotic systems.
  • Load Distribution: Worm wheels play a role in distributing the load in mechanical assemblies. The sliding action between the worm gear and the worm wheel creates a larger contact area compared to other gear types. This increased contact area allows for better load distribution, minimizing stress concentration and ensuring even distribution of forces. By distributing the load effectively, worm wheels contribute to the longevity and reliability of mechanical assemblies.

Overall, worm wheels provide precise speed control, torque amplification, torque limiting, directional control, and load distribution capabilities in mechanical assemblies. These features make worm wheels versatile components that are widely used in various applications where precise control, torque management, and reliable performance are essential.

Can you explain the impact of worm wheels on the overall efficiency of gearing systems?

Worm wheels have a significant impact on the overall efficiency of gearing systems. Here’s a detailed explanation of their influence:

  • Gear Reduction: Worm wheels are known for their high gear reduction ratios, which means they can achieve significant speed reduction in a single stage. This is due to the large number of teeth on the worm wheel compared to the number of starts on the worm. The gear reduction capability of worm wheels allows for the transmission of high torque at low speeds. However, it’s important to note that the high gear reduction also leads to a trade-off in terms of efficiency.
  • Inherent Efficiency Loss: Worm gears inherently introduce some efficiency loss due to the sliding action that occurs between the worm and the worm wheel. This sliding action generates friction, which results in energy losses and heat generation. Compared to other types of gears, such as spur gears or helical gears, worm gears typically have lower efficiency levels.
  • Self-Locking Property: One unique characteristic of worm wheels is their self-locking property. When the worm wheel is not being actively driven, the friction generated between the worm and the worm wheel prevents the worm wheel from rotating backward. This self-locking feature provides stability and prevents the system from backdriving. However, it also contributes to the overall efficiency loss of the gearing system.
  • Lubrication and Friction: Proper lubrication of worm wheels is crucial for reducing friction and improving their efficiency. Lubrication forms a thin film between the worm and the worm wheel, reducing direct metal-to-metal contact and minimizing frictional losses. Insufficient or improper lubrication can lead to increased friction, higher energy losses, and reduced efficiency. Therefore, maintaining appropriate lubrication levels is essential for optimizing the efficiency of worm gear systems.
  • Design Factors: Several design factors can impact the efficiency of worm wheels. These include the tooth profile, helix angle, material selection, and manufacturing tolerances. The tooth profile and helix angle can influence the contact pattern and the distribution of loads, affecting efficiency. The choice of materials with low friction coefficients and good wear resistance can help improve efficiency. Additionally, maintaining tight manufacturing tolerances ensures proper meshing and reduces energy losses due to misalignment or backlash.
  • Operating Conditions: The operating conditions, such as the applied load, speed, and temperature, can also affect the efficiency of worm wheels. Higher loads and speeds can lead to increased friction and energy losses, reducing efficiency. Elevated temperatures can cause lubricant degradation, increased viscosity, and higher friction, further impacting efficiency. Therefore, operating within the specified load and speed limits and maintaining suitable operating temperatures are essential for optimizing efficiency.

In summary, worm wheels have a notable impact on the overall efficiency of gearing systems. While they offer high gear reduction ratios and self-locking capabilities, they also introduce inherent efficiency losses due to friction and sliding action. Proper lubrication, suitable design considerations, and operating within specified limits are essential for maximizing the efficiency of worm gear systems.

Can you describe the various types and configurations of worm wheels available?

There are several types and configurations of worm wheels available to suit different applications and requirements. Here’s a description of the various types and configurations:

  • Single-Threaded Worm Wheel: This is the most common type of worm wheel configuration. It has a single thread on its circumference that meshes with the worm gear. Single-threaded worm wheels provide a high gear reduction ratio and are used in applications where high torque and low-speed operation are required.
  • Double-Threaded Worm Wheel: Double-threaded worm wheels have two threads on their circumference, which results in increased contact area and improved load distribution. This configuration allows for higher torque transmission capacity and smoother operation. Double-threaded worm wheels are utilized in applications that require even higher torque output and improved efficiency.
  • Non-Cylindrical Worm Wheel: In some cases, the worm wheel may have a non-cylindrical shape. For example, it can have a concave or convex profile. Non-cylindrical worm wheels are used in specific applications where the shape is designed to accommodate unique requirements such as increased contact area, improved load distribution, or specialized motion control.
  • Enveloping Worm Wheel: Enveloping worm wheels have specialized tooth profiles that provide increased contact area and improved load-carrying capacity. The teeth of the worm wheel wrap around the helical threads of the worm gear, resulting in enhanced meshing and load distribution. Enveloping worm wheels are typically used in high-load applications that require superior torque transmission and durability.
  • Hypoid Worm Wheel: Hypoid worm wheels are designed with a hypoid offset, meaning that the centerline of the worm gear is offset from the centerline of the worm wheel. This configuration allows for smoother meshing and increased contact area, leading to improved load distribution and reduced wear. Hypoid worm wheels are often utilized in applications that require high torque, compact design, and smooth operation.
  • Materials: Worm wheels can be made from a variety of materials depending on the application requirements. Common materials include steel, bronze, brass, and specialized alloys. Steel worm wheels offer high strength and durability, while bronze and brass worm wheels provide excellent wear resistance and self-lubricating properties. The choice of material depends on factors such as load capacity, operating conditions, and cost considerations.

These are some of the types and configurations of worm wheels available. The selection of a particular type depends on the specific application requirements, including torque, speed, load capacity, space constraints, and desired efficiency. It’s important to consider factors such as tooth profile, material selection, and manufacturing precision to ensure the reliable and efficient operation of the worm wheel in a given application.

China wholesaler CHINAMFG S Series Helical Worm Geared Motor with Output Flange  China wholesaler CHINAMFG S Series Helical Worm Geared Motor with Output Flange
editor by CX 2024-04-09